Большая советсткая энциклопедия Эллипс (геометрич.)
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Эллипс (геометрич.)

Эллипс, линия пересечения круглого конуса с плоскостью, встречающей одну его полость (рис. 1). Э. может быть также определён как геометрическое место точек М плоскости, для которых сумма расстояний до двух определенных точек F1 и F2 (фокусов Э.) этой плоскости есть величина постоянная. Если выбрать систему координат xOy так, как указано на рис. 2 (OF1 =OF2 = с), то уравнение Э. примет вид:

(*)

(2a = F1M + F2M, ). Э. — линия второго порядка; она симметрична относительно осей AB и CD; точка О — центр Э. — является его центром симметрии; отрезки AB = 2a и CD = 2b называются соответственно большой и малой осями Э.; число е = с/а<1 — эксцентриситет Э. (при е = 0, то есть при а = b, Э. есть окружность). Прямые, уравнения которых x = —а/е и х = а/е, называются директрисами Э.; отношение расстояния точки Э. до ближайшего фокуса к расстоянию до ближайшей директрисы постоянно и равно эксцентриситету. Точки А, В, С, D пересечения Э. с осями Ox и Оу называются его вершинами. См. также Конические сечения.

Следующие

Эллипс инерции в сопротивлении материалов, графическое изображение, используемое для вычисления осевых и центробежных моментов и… читать дальше



Эллипсоид (от эллипс и греч. eidos — вид), замкнутая центральная поверхность второго порядка. Э. имеет центр симметрии О (см. ри… читать дальше



Эллипс (от греч. elleipsis — нехватка, опущение, выпадение), пропуск в речи (тексте) подразумеваемой языковой единицы: звука или… читать дальше