Бернулли
Бернулли (Bernoulli), семья швейцарских учёных, родоначальник которой Якоб Б. (умер 1583) был выходцем из Голландии.
Якоб Б. (27.12.1654, Базель, — 16.8.1705, там же), профессор математики Базельского университета (1687). Ознакомившись в этом же году с первым мемуаром Г. В. Лейбница по дифференциальному исчислению (1684), Б. вскоре блестяще применил новые идеи к изучению свойств ряда кривых. Совместно с братом Иоганном положил начало вариационному исчислению. При этом особое значение имели выдвинутая и частью решенная Якобом Б. изопериметрическая задача и найденное им решение поставленной Иоганном Б. задачи о брахистохроне. Доказал т. н. Бернулли теорему — важный частный случай закона больших чисел (см. Больших чисел закон). В связи с вычислением суммы одинаковых степеней натуральных чисел открыл т. н. Бернулли числа. Работал также в области физики (определение центра качания тел и сопротивления тел различной формы, движущихся в жидкости).
Соч.: Opera omnia, v. 1—2, Genevae, 1744; Wahrscheinlichkeitsrechnung (Ars conjectandi), t. 1—4, Lpz.,1899 (Ostwald's Klassikerder exakten Wissenschaften, Н. 107—108); в рус. пер.—Часть четвертая сочинения "Ars conjectandi", СПБ. 1913.
Иоганн Б. (27.7.1667, Базель, — 1.1.1748, там же), младший брат Якоба Б., профессор математики Гронингенского (Голландия) (с 1695) и Базельского (с 1705) университетов. Почётный член Петербургской АН. Был деятельным сотрудником Лейбница в разработке дифференциального и интегрального исчислений, в области которых им был сделан ряд открытий. Дал первое систематическое изложение дифференциального и интегрального исчислений, продвинул далее разработку методов решения обыкновенных дифференциальных уравнений, поставил классическую задачу о геодезических линиях и нашел характерное геометрическое свойство этих линий, а позднее вывел их дифференциальное уравнение. Ожесточённый спор о решении вариационных задач, разгоревшийся между Иоганном и Якобом Б., в некоторой мере способствовал постановке новых проблем в этой области. Иоганну Б. принадлежат также ценные исследования по механике: теория удара, движение тел в сопротивляющейся среде, учение о живой силе и др.
Соч.: Opera omnia, v. 1—4, Lausannae— Genevae, 1742; в рус. пер.— Избр. соч. по механике, М.—Л., 1937.
Даниил Б. (29.1.1700, Гронинген, — 17.3.1782, Базель), сын Иоганна Б. Занимался физиологией и медициной, но больше всего математикой и механикой. В 1725—33 он работал в Петербургской АН сначала на кафедре физиологии, а затем механики. Впоследствии он состоял почётным членом Петербургской АН, опубликовал (с 1728—78) в её изданиях 47 работ. Профессор в Базеле по физиологии (1733) и по механике (1750). В математике Даниилу Б. принадлежат: метод численного решения алгебраических уравнений с помощью возвратных рядов, работы по обыкновенным дифференциальным уравнениям, по теории вероятностей с приложением к статистике народонаселения и, отчасти, к астрономии, по теории рядов. В работах, завершенных написанным в Петербурге трудом "Гидродинамика" (1738), вывел основное уравнение стационарного движения идеальной жидкости, носящее его имя (см. Бернулли уравнение гидродинамики). Даниил Б. разрабатывал кинетические представления о газах.
Соч.: Hydrodynamica sive de viribus et motibus fluidorum commentarii, Argentoratoe, 1738.
Лит.: Райнов Т. И., Даниил Бернулли и его работа в Петербургской академии наук, "Вестник АН СССР", 1938, № 7—8.
Из др. членов семьи Б. могут быть названы: Николай Б. (1687—1759), племянник Якоба и Иоганна, профессор математики в Падуе и Базеле; Николай Б. (1695—1726), сын Иоганна, профессор математики в Петербургской АН; Якоб Б. (1759—89), племянник Даниила, член Петербургской АН, автор ценных трудов по механике.
Следующие
Бернулли схема (названа по имени Я. Бернулли), одна из основных математических моделей для описания независимых повторений опыто… читать дальше
Бернулли теорема, одна из важнейших теорем теории вероятностей; является простейшим случаем т. н. закона больших чисел (см. Боль… читать дальше
Бернулли уравнение, основное уравнение гидродинамики, связывающее (для установившегося течения) скорость текущей жидкости v, дав… читать дальше