Большая советсткая энциклопедия Симметрическая матрица
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Симметрическая матрица

Симметрическая матрица, квадратная матрица S = llsikll, в которой любые два элемента, симметрично расположенные относительно главной диагонали, равны между собой: sik = ski (i, k = 1,2,..., n). С. м. часто рассматривается как матрица коэффициентов некоторой квадратичной формы; между теорией С. м. и теорией квадратичных форм существует тесная связь.

Спектральные свойства С. м. с действительными элементами: 1) все корни l1, l2,..., ln характеристического уравнения С. м. действительны; 2) этим корням соответствуют n попарно ортогональных собственных векторов С. м. (n — порядок С. м.). С. м. с действительными элементами всегда представима в виде: S'= ODO-1

где О ортогональная матрица, а

.

Следующие

Симметрические функции, функции нескольких переменных, не изменяющиеся при любых перестановках переменных, например или . Ос… читать дальше



Симметричность в математике и логике, свойство бинарных (двуместных, двучленных) отношений, выражающее независимость выполнимост… читать дальше



Симметрия в биологии (биосимметрия). На явление С. в живой природе обратили внимание ещё в Древней Греции пифагорейцы (5 в. до н… читать дальше