Большая советсткая энциклопедия Ошибок теория
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Ошибок теория

Ошибок теория, раздел математической статистики, посвященный построению уточнённых выводов о численных значениях приближённо измеренных величин, а также об ошибках (погрешностях) измерений. Повторные измерения одной и той же постоянной величины дают, как правило, различные результаты, так как каждое измерение содержит некоторую ошибку. Различают 3 основных вида ошибок: систематические, грубые и случайные. Систематические ошибки всё время либо преувеличивают, либо преуменьшают результаты измерений и происходят от определённых причин (неправильной установки измерительных приборов, влияния окружающей среды и т. д.), систематически влияющих на измерения и изменяющих их в одном направлении. Оценка систематических ошибок производится с помощью методов, выходящих за пределы математической статистики (см. Наблюдений обработка). Грубые ошибки возникают в результате просчёта, неправильного чтения показаний измерительного прибора и т. п. Результаты измерений, содержащие грубые ошибки, сильно отличаются от других результатов измерений и поэтому часто бывают хорошо заметны. Случайные ошибки происходят от различных случайных причин, действующих при каждом из отдельных измерений непредвиденным образом то в сторону уменьшения, то в сторону увеличения результатов.

О. т. занимается изучением лишь грубых и случайных ошибок. Основные задачи О. т.: разыскание законов распределения случайных ошибок, разыскание оценок (см. Статистические оценки) неизвестных измеряемых величин по результатам измерений, установление погрешностей таких оценок и устранение грубых ошибок.

Пусть в результате n независимых равноточных измерений некоторой неизвестной величины а получены значения x1, x2,..., xn. Разности

d1 = x1 — a,…, dn = xn — a

называются истинными ошибками. В терминах вероятностной О. т. все di трактуются как случайные величины; независимость измерений понимается как взаимная независимость случайных величин d1,..., dn. Равноточность измерений в широком смысле истолковывается как одинаковая распределённость: истинные ошибки равноточных измерений суть одинаково распределённые случайные величины. При этом математическое ожидание случайных ошибок b = Ed1=...= Еdnназывается систематической ошибкой, а разности d1 b,..., dn b — случайными ошибками. Таким образом, отсутствие систематической ошибки означает, что b = 0, и в этой ситуации d1,..., dn суть случайные ошибки. Величину , где а — квадратичное отклонение, называют мерой точности (при наличии систематической ошибки мера точности выражается отношением . Равноточность измерений в узком смысле понимается как одинаковость меры точности всех результатов измерений. Наличие грубых ошибок означает нарушение равноточности (как в широком, так и в узком смысле) для некоторых отдельных измерений. В качестве оценки неизвестной величины а обычно берут арифметическое среднее из результатов измерений

,

а разности D1 = x1 ,..., Dn = xn называются кажущимися ошибками. Выбор в качестве оценки для а основан на том, что при достаточно большом числе n равноточных измерений, лишённых систематической ошибки, оценка с вероятностью, сколь угодно близкой к единице, сколь угодно мало отличается от неизвестной величины а (см. Больших чисел закон); оценка лишена систематической ошибки (оценки с таким свойством называются несмещенными); дисперсия оценки есть

D = E( — а)2 = s2/n.

Опыт показывает, что практически очень часто случайные ошибки di подчиняются распределениям, близким к нормальному (причины этого вскрыты так называемыми предельными теоремами теории вероятностей). В этом случае величина имеет мало отличающееся от нормального распределение, с математическим ожиданием а и дисперсией s2/n. Если распределения di в точности нормальны, то дисперсия всякой другой несмещенной оценки для а, например медианы, не меньше D . Если же распределение di отлично от нормального, то последнее свойство может не иметь места.

Если дисперсия s2 отдельных измерений заранее известна, то для её оценки пользуются величиной

(Es2 = s2, т. е. s2 несмещенная оценка для s2), если случайные ошибки di имеют нормальное распределение, то отношение

подчиняется Стьюдента распределению с n 1 степенями свободы. Этим можно воспользоваться для оценки погрешности приближённого равенства а " (см. Наименьших квадратов метод).

Величина (n — 1) s2/s2 при тех же предположениях имеет распределение c2 (см. "Хи-квадрат" распределение) с n 1 степенями свободы. Это позволяет оценить погрешность приближённого равенства s " s. Можно показать, что относительная погрешность |s — s|Is не будет превышать числа q с вероятностью

w = F (z2, n — 1) — F (z1, n — 1),

где F (z, n — 1) — функция распределения c2,

, .

Лит.: Линник Ю. В., Метод наименьших квадратов и основы математико-статистической теории обработки наблюдений, 2 изд., М., 1962; Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, 2 изд., М., 1968.

Л. Н. Большев.

Следующие

Ошкалн, Ошкалнс Отомар Петрович [30.3(12.4).1904, Скуенская волость, ныне Цесисского района Латвийской ССР,— 1.9.1947, Рига], со… читать дальше



Ошки, средневековый монастырь, один из культурных центров грузинской исторической области Кларджети (ныне территория Турции, вил… читать дальше



Ошкуи, хищное млекопитающее семейства медведей; то же, что белый медведь.… читать дальше