Большая советсткая энциклопедия Существенно особая точка
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Существенно особая точка

Существенно особая точка аналитической функции, точка z0 комплексной плоскости, в которой не существует ни конечного, ни бесконечного предела при z ® z0 для функции, однозначной и аналитической в некоторой окрестности этой точки (см. Аналитические функции). Примеры: точка z = 0является С. о. т. для функции , , и т. д. В окрестности С. о. т. z0 функция f (z) может быть разложена в Лорана ряд

,

причём среди чисел b1, b2,... бесконечно много отличных от нуля. Это свойство часто используется для определения С. о. т. О поведении функции в окрестности С. о. т. позволяет судить Сохоцкого-Вейерштрасса теорема. Обобщением этой теоремы служит большая теорема Пикара: во всякой окрестности С. о. т. аналитическая функция принимает любое комплексное значение, кроме, быть может, одного. Последняя теорема, в свою очередь, имеет ряд обобщений и уточнений. В некоторых отделах теории аналитических функций под С. о. т. понимают также особые точки более сложной природы.

Лит.: Маркушевич А. И., Теория. аналитических функций, 2 изд., т. 1—2, М., 1967—68; Неванлинна Р., Однозначные аналитические функции, пер. с нем., М.- Л., 1941.

Следующие

Cуществительное, часть речи, класс полнозначных слов (лексем), который включает в себя названия предметов и одушевлённых существ… читать дальше



Существование [позднелат. ex (s) istentia, от лат. ex (s) isto — существую], в диалектико-материалистической философии синоним б… читать дальше



Сущность и явление, философские категории, отражающие всеобщие формы предметного мира и его познание человеком. Сущность — это в… читать дальше