Большая советсткая энциклопедия Сопряжённые дифференциальные уравнения
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Сопряжённые дифференциальные уравнения

Сопряжённые дифференциальные уравнения, понятие теории дифференциальных уравнений. Уравнением, сопряжённым с дифференциальным уравнением

, (1)

называется уравнение

, (2)

Соотношение сопряженности взаимно. Для С. д. у. имеет место тождество

,

где y (у, z) билинейная форма относительно у, z и их производных до (n - 1)-го порядка включительно. Знание k интегралов сопряжённого уравнения позволяет понизить на k единиц порядок данного уравнения. Если

y1, у2,... уn (3)

— фундаментальная система решений уравнения (1), то фундаментальная система решений уравнения (2) даётся формулами

,

где D — определитель Вроньского (см. Вронскиан) системы (3). Если для уравнения (1) заданы краевые условия, то существуют сопряжённые с ними краевые условия для уравнения (2) такие, что уравнения (1) и (2) с соответствующими краевыми условиями определяют сопряжённые дифференциальные операторы (см. Сопряжённые операторы). Понятие сопряженности обобщается также на системы дифференциальных уравнений и на уравнения с частными производными.

Следующие

Сопряжённые операторы, понятие операторов теории. Два ограниченных линейных оператора Т и Т* в гильбертовом пространстве называю… читать дальше



Сопряжённые реакции, такие реакции химические, которые протекают только совместно и при наличии хотя бы одного общего реагента. … читать дальше



Сопряжённые точки в оптике, пары точек, в каждой из которых одна является по отношению к оптической системе объектом, вторая — е… читать дальше