Большая советсткая энциклопедия Риккати уравнение
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Риккати уравнение

Риккати уравнение, обыкновенное дифференциальное уравнение 1-го порядка вида

, (*)

где а, b, а — постоянные. Это уравнение впервые исследовалось Я. Риккати (1724); отдельные частные случаи рассматривались раньше. Д. Бернулли установил (1724—25), что уравнение (*)интегрируется в элементарных функциях, если а =2 или а = — 4kl (2k — 1), где k — целое число. Как доказал Ж. Лиувилль (1841), при других значениях а решение уравнения (*) нельзя выразить в квадратурах от элементарных функций; общее решение его может быть записано с помощью цилиндрических функций. Дифференциальное уравнение

,

где Р (х), Q (x), R (x) непрерывные функции, называется общим Р. у. [в отличие от него уравнение (*) называется специальным Р. у.]. При Р (х) = 0 общее Р. у. является линейным дифференциальным уравнением, при R (x) = 0 — так называемым Бернулли уравнением, которые интегрируются в конечном виде. Изучены также другие случаи интегрируемости общего Р. у.

Лит.: Камке Э., Справочник по обыкновенным дифференциальным уравнениям, пер. с нем., 4 изд., М., 1971.

Следующие

Риккати (Riccati) Якопо Франческо (28.5.1676, Венеция, — 15.4.1754, Тревизо), итальянский математик. Учился в Падуе. С 1747 жил … читать дальше



Риккерт (Rickert) Генрих (25.5.1863, Данциг, ныне Гданьск, Польша, — 30.7. 1936, Гейдельберг), немецкий философ, один из основат… читать дальше



Риккетсии, мелкие болезнетворные бактерии, размножающиеся только в клетках хозяина; названы по имени американского учёного Х. Т.… читать дальше