Диэлектрическая электроника
Диэлектрическая электроника, область физики, занимающаяся исследованием и практическим применением явлений, связанных с протеканием электрических токов в диэлектриках. Концентрация электронов проводимости или каких-либо других свободных носителей заряда в диэлектриках (дырок, ионов) пренебрежимо мала. Поэтому до недавнего времени диэлектрики в электро- и радиотехнике использовались только как изоляторы (см. Электроизоляционные материалы). Исследования тонких диэлектрических плёнок показали, что при контакте с металлом в диэлектрик переходят электроны или дырки, в результате чего у контакта в тонком слое диэлектрика появляются в заметном количестве свободные носители заряда. Если диэлектрик массивный, то весь его остальной объём действует по-прежнему как изолятор, и поэтому в системе металл—диэлектрик—металл ток ничтожно мал. Если же между двумя металлическими электродами поместить тонкую диэлектрическую плёнку (обычно 1—10 мкм), то эмитируемые из металла электроны заполнят всю толщу плёнки и напряжение, приложенное к такой системе, создаст ток через диэлектрик.
Теоретически возможность протекания управляемых эмиссионных токов через диэлектрик была предсказана английскими физиками Н. Моттом и Р. Гёрни в 1940. Д. э. изучает протекание токов, ограниченных пространственным зарядом в диэлектриках, при термоэлектронной эмиссии из металлов и полупроводников, при туннельной эмиссии и т.д.
Простейший прибор Д. э. — диэлектрический диод представляет собой сандвич-структуру металл—диэлектрик—металл (рис. 1). Он во многом аналогичен электровакуумному диоду и поэтому называется аналоговым. Его выпрямляющее действие обусловлено различием работы выхода электронов из электродов, изготовленных из разных металлов. Для одного из электродов — истока (аналог катода) применяется металл, у которого работа выхода электронов в данный диэлектрик мала (доли эв); для второго (сток — аналог анода) — металл с большой работой выхода (1—2 эв). Поэтому в одном направлении возникают значительные токи, а в обратном направлении токи исчезающе малы. Коэффициент выпрямления диэлектрического диода достигает значений 104 и выше.
Создание диэлектрического триода связано с технологическими трудностями размещения управляющего электрода — затвора (аналог сетки в электровакуумном триоде) в тонком слое диэлектрика между истоком и стоком. В одном типе триода эмиссия происходит из полупроводника n, обладающего электронной проводимостью, в высокоомный полупроводник р с дырочной проводимостью, который играет роль диэлектрика (рис. 2). Низкоомные области, образованные из полупроводника Р+ с высокой дырочной проводимостью, исполняют роль, во многом сходную с ролью металлических ячеек сетки электровакуумного триода. Подаваемое на эти области внешнее напряжение управляет величиной тока, протекающего между истоком и стоком.
В другом типе триода (рис. 3) затвор помещён вне диэлектрика CdS; его роль сводится к изменению распределения потенциала в диэлектрике, от чего существенно зависит величина тока. физическая картина явлений в этих триодах значительно сложнее и существенно отличается от протекания эмиссионных токов в вакууме. Распространение получили триоды с изолированным затвором МОП (металл—окисел— полупроводник) или МДП (металл—диэлектрик—полупроводник).
В приборах Д. э. удачно сочетаются достоинства полупроводниковых и электровакуумных приборов и отсутствуют многие их недостатки. Приборы Д. э. микроминиатюрны. Создание эмиссионных токов в диэлектриках не требует затрат энергии на нагрев эмитирующего электрода и не сталкивается с проблемой отвода тепла. Диэлектрические приборы малоинерционны, обладают хорошими частотными характеристиками, низким уровнем шумов, мало чувствительны к изменениям температуры и радиации.
Лит.: Мотт Н., Герни Р., Электронные процессы в ионных кристаллах, пер. с англ., М., 1950; Адирович Э. И., Электрические поля и токи в диэлектриках, "Физика твердого тела", 1960, т. 2, в. 7, с. 1410; его же, Эмиссионные токи в твердых телах и диэлектрическая электроника, в сб.: Микроэлектроника, под ред. Ф. В. Лукина, в. 3, М., 1969, с. 393.
Э. И. Адирович.
Следующие
Диэлектрические измерения, измерения величин, характеризующих свойства диэлектриков в постоянном и переменном электрических поля… читать дальше
Диэлектрические потери, часть энергии переменного электрического поля в диэлектрической среде, которая переходит в тепло. При из… читать дальше
Диэлектрический волновод, радиоволновод, состоящий целиком из диэлектрических материалов (полиэтилена, полистирола и др.).… читать дальше