Большая советсткая энциклопедия Диэлектрические измерения
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Диэлектрические измерения

Диэлектрические измерения, измерения величин, характеризующих свойства диэлектриков в постоянном и переменном электрических полях. К Д. и. относятся измерения диэлектрической проницаемости e в постоянных и переменных полях, диэлектрических потерь, удельной электропроводности в постоянном электрическом поле, электрической прочности.

В случае твёрдых диэлектриков Д. и. часто сводятся к измерению ёмкости С плоского электрического конденсатора, между пластинами которого помещён исследуемый диэлектрик. По формуле

(d — толщина диэлектрического образца, S — площадь его боковой грани, k — коэффициент пропорциональности) находят диэлектрическую проницаемость e. В случае жидкостей и газов измеряют ёмкость системы электродов в вакууме (С0) и в данном веществе (Сe), а затем определяют e из соотношения: e = Сe/С0.

Методы измерения ёмкости и диэлектрических потерь различны для разных частот электрического поля. В постоянном поле и при низких частотах (десятые доли гц) ёмкость, как правило, определяют путём измерений зарядного или разрядного токов конденсатора с помощью баллистического гальванометра (рис. 1).

В области частот от десятых гц до 107 гц, помимо С, существенно измерение диэлектрических потерь, мерой которых является тангенс угла диэлектрических потерь tg d. С и tg d измеряют с помощью мостовых схем, в частности мостов Шеринга.

В высокочастотной области (от 105 до 108 гц) для измерения ёмкости Сe и диэлектрической проницаемости e применяют главным образом резонансные методы (рис. 2). Колебательный контур, содержащий образцовый конденсатор (см. Емкости меры), настраивается в резонанс, и определяется соответствующая резонансу величина ёмкости С'. Затем параллельно образцовому конденсатору присоединяют конденсатор с диэлектриком Сe, и контур снова настраивается в резонанс. Во втором случае ёмкость С" образцового конденсатора будет меньше. Ёмкость конденсатора, заполненного диэлектриком Ce, определяется по формуле:

Ce = C' - С". (1)

Различные резонансные методы отличаются друг от друга по способу определения tg d. В методе замещения диэлектрик заменяется эквивалентной схемой, состоящей из ёмкости и сопротивления. Подбирается такое сопротивление R, которое, будучи включено последовательно или параллельно образцовому конденсатору С, ёмкость которого берётся равной ёмкости диэлектрика Сe, даёт такой же резонансный ток в контуре, как и образец диэлектрика. Метод расстройки контура основан на том, что ширина резонансной кривой контура определяется его добротностью Q, связанной с тангенсом угла потерь диэлектрика соотношением:

tg d = 1/Q. (2)

Ёмкость и диэлектрические потери определяют также методом куметра. В данной области частот можно применять также метод биений.

В области сверхвысоких частот (от 108 до 1011 гц) Д. и. основаны на использовании объёмных резонаторов и радиоволноводов, а также на закономерностях распространения электромагнитных волн в свободном пространстве. В случае газообразных диэлектриков измеряют резонансную частоту w0 и добротность Q0 объёмного резонатора (рис. 3), когда в нём создан вакуум, и те же величины we и Qe, когда он целиком заполнен диэлектриком. При этом имеют место соотношения:

В случае жидких и твёрдых диэлектриков, если они целиком заполняют резонатор, получаются гораздо большие изменения резонансной частоты и добротности. Кроме того, если диэлектрические потери велики, то добротность резонатора становится весьма малой величиной. Это нарушает справедливость формул (3) и (4). Поэтому применяют частичное заполнение резонатора диэлектриком, чаще всего имеющим форму диска или стержня.

Другой метод Д. и. в области СВЧ состоит в том, что в радиоволноводе устанавливаются бегущая или стоячая электромагнитные волны. Для волновода, заполненного диэлектриком, длина волны le равна:

где l0 — длина волны в свободном пространстве, lкр — критическая (предельная) длина волны, зависящая от типа волн и размеров поперечного сечения волновода. Из формулы (5) можно определять e. При введении диэлектрика в волновод изменяются условия распространения волн и происходит поглощение энергии электромагнитного поля. Это позволяет определить tg d.

Существуют два основных метода измерения e и tg d с помощью волновода. Первый основан на наблюдении картины стоячих волн в волноводе, нагружённом известным сопротивлением. Второй — на наблюдении поглощения волн, проходящих через диэлектрик. В случае газов, которые имеют e " 1 и малые диэлектрические потери, e и tg d определяют с помощью установки, схематически изображённой на рис. 3. В среднем участке волновода, отгороженном слюдяными окнами, создаётся вакуум, а затем туда вводится газ. При этом в согласии с формулой (5) длина волны уменьшается и положение минимумов стоячей волны смещается. Д. и. жидкостей и твёрдых тел, имеющих e ¹ 1, осложняются отражением волн на границе воздух — диэлектрик. В этих условиях наблюдают картину стоячих волн на входе заполненного диэлектриком волновода с помощью измерительной линии. В области миллиметровых, инфракрасных и световых волн измеряют коэффициент отражения или преломления и коэффициент поглощения диэлектрика, откуда находят e и tg d.

Методы измерения удельной электропроводности диэлектриков s в постоянном поле существенно не отличаются от аналогичных методов для металлов и полупроводников. Для точных измерений очень малых s используют постоянного тока усилитель.

Измерения электрической прочности Епр основаны на измерении напряжения Vnp, которое соответствует наступлению диэлектрического пробоя:

Епр = Vпр/d, (6)

где d — расстояние между электродами.

Лит.: Сканави Г. И., Диэлектрическая поляризация и потери в стеклах и керамических материалах с высокой диэлектрической проницаемостью, М. — Л., 1952; Карандеев К. Б., Мостовые методы измерений, К., 1953; Хиппель А. Р., Диэлектрики и их применение, пер. с англ., М. — Л., 1959; Браун В., Диэлектрики, пер. с англ., М., 1961; Измерения на сверхвысоких частотах, пер. с англ., под ред. В. Б. Штейншлейгера, М., 1952.

А. Н. Губкин.

Следующие

Диэлектрические потери, часть энергии переменного электрического поля в диэлектрической среде, которая переходит в тепло. При из… читать дальше



Диэлектрический волновод, радиоволновод, состоящий целиком из диэлектрических материалов (полиэтилена, полистирола и др.).… читать дальше



Диэлектрический нагрев, нагрев диэлектриков в переменном электрическом поле. При наложении переменного электрического поля в диэ… читать дальше