Дирихле интеграл
Дирихле интеграл (по имени П. Г. Л. Дирихле), название интегралов нескольких типов.
1) Интеграл
Этот Д. и. называется также разрывным множителем Дирихле и равен p/2 при b < a, p/4 при b = a и 0 при b > a. Таким образом, Д. и. (1) является разрывной функцией от параметров a и b. Дирихле использовал интеграл (1) в своих исследованиях о притяжении эллипсоидов. Впрочем, этот интеграл встречается ранее у Ж. Фурье, С. Пуассона и А. Лежандра.
2) Интеграл
где
есть так называемое ядро Дирихле. Этот Д. и. равен n-й частичной сумме
ряда Фурье функции f (х). Формула (2) является одной из важнейших формул теории рядов Фурье, в частности, позволившей Дирихле установить, что ряд Фурье функции, имеющей конечное число максимумов и минимумов, сходится в каждой точке.
3) Интеграл
Подробнее см. Дирихле принцип (в теории гармонических функций).
Следующие
Дирихле (Dirichlet) Петер Густав Лежён (13.2.1805, Дюрен, — 5.5.1859, Гёттинген), немецкий математик. В 1831—1855 профессор Берл… читать дальше
Дирихле принцип (по имени П. Г. Л. Дирихле), 1) принцип ящиков — предложение, утверждающее, что в случае m > n при отнесении … читать дальше
Дирихле ряды (по имени П. Г. Л. Дирихле), функциональные ряды вида (здесь an — коэффициенты Д. р., a s = s + it — комплексное… читать дальше