Большая советсткая энциклопедия Фототеодолитная съёмка
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Фототеодолитная съёмка

Фототеодолитная съёмка, съёмка местности, карьеров, инженерных сооружений и др. объектов с применением фототеодолита и приборов для фотограмметрической обработки снимков. Фототеодолитом с концов базиса S1 и S2 (рис. 1) получают снимки P1 и P2 объекта, по которым с помощью стереокомпаратора или стереоавтографа определяют координаты отдельных точек и составляют цифровую модель или план объекта. Положение снимка, например P1, в момент фотографирования определяют элементы внутреннего ориентирования: фокусное расстояние фотокамеры – f и координаты главной точки o1x0, z0, а также элементы внешнего ориентирования: координаты центра проекции S1Xs1, Ys1, Zs1 в системе OXYZ и углы a1, w1, m1.

Различают общий случай съёмки, когда элементы ориентирования снимков имеют произвольные значения, и частные случаи, в которых направления оптической оси фотокамеры горизонтальны, a = w = m = 0, Xs1 = Ys1 = Zs1 = 0, x0 = z0 = 0. К частным случаям относятся: конвергентный (y1 ¹ y2, рис. 2), параллельный (y1 = y2) и нормальный (y1 = y2 = 90°).

В общем случае между координатами точки объекта М и координатами её изображений m1 и m2 на стереопаре P1P2(рис. 1) существует связь:

X = Xs1 + N , Y = Ys1 + N , Z = Zs1 + N , (1)

где

, (2)

Bx, By, Bzпроекции базиса В на оси координат, , , и , , – координаты точек m1 и m2 в системах S1XYZ и S1XYZ, параллельных OXYZ, вычисляемые по формулам:

(3)

Здесь х, z – плоские координаты точки снимка в системе o1'x1z1 или o2'x2z2, ai, b1 ciнаправляющие косинусы, определяемые по углам a, w, m. Для параллельного случая съёмки формулы (1) принимают вид:

;

;

а для нормального

, , .

Ф. с. применяется в геодезии, топографии и астрономии для построения и сгущения опорной геодезической основы, а также для составления планов местности. По снимкам ИСЗ и звёздного неба, полученным с помощью спутниковых фотокамер, создаётся геодезическая основа на всю территорию земного шара (см. Космическая триангуляция).

Ф. с. широко используется и в др. областях науки и техники для решения многих задач, например в географии для изучения ледников и процесса снегонакопления на лавиноопасных склонах; в лесоустройстве и сельском хозяйстве для определения лесотаксационных характеристик, изучения эрозии почв; в инженерно-строительном деле при изыскании, проектировании, строительстве и эксплуатации различных сооружений (рис. 3); в архитектуре для изучения особенностей сооружений, наблюдения за состоянием архитектурных ансамблей, отдельных зданий и памятников старины (рис. 4, 5); в промышленности для контроля установки каркаса турбин и прокатных станов и определения состояния дымовых труб; в исследованиях рек, морей и океанов для картографирования их поверхности и дна, а также для изучения подводного мира; в космических исследованиях для изучения поверхности Земли, Луны и др. небесных тел с ИСЗ и космических кораблей.

Лит.: Лобанов А. Н., Фототопография, 3 изд., М., 1968; Рапасов П. Н., Составление карт масштаба 1: 2000 – 1: 25 000 методом комбинированной наземной и воздушной стереофотограмметрической съёмки, М., 1958; Киенко Ю. П., Аналитические методы определения координат в наземной стереофотограмметрии, М., 1972; Тюфлин Ю. С., Способы стереофотограмметрической обработки снимков, полученных с подвижного базиса, М., 1971: Итоги науки и техники. Геодезия и аэросъёмка, т. 10, М., 1975; Русинов М. М., Инженерная фотограмметрия, М., 1966; Сердюков В. М., Фотограмметрия в инженерно-строительном деле, М., 1970.

А. Н. Лобанов.

Следующие

Фототерапия, то же, что светолечение.… читать дальше



Фототермомагнитный эффект, электронный термомагнитный эффект, возникновение в однородном полупроводнике, помещенном в магнитное … читать дальше



Фототипия (от фото... и греч. týpos – отпечаток, форма), способ безрастровой плоской печати иллюстраций, основанный на из… читать дальше