Большая советсткая энциклопедия Скорость звука
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Скорость звука

Скорость звука, скорость распространения какой-либо фиксированной фазы звуковой волны; называется также фазовой скоростью, в отличие от групповой скорости. С. з. обычно величина постоянная для данного вещества при заданных внешних условиях и не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и С. з. зависит от частоты, говорят о дисперсии звука.

Для газов и жидкостей, где звук распространяется обычно адиабатически (т. е. изменение температуры, связанное со сжатиями и разряжениями в звуковой волне, не успевает выравниваться за период), выражение для С. з. можно представить, как

,

где Кад адиабатический модуль объёмного сжатия, r — плотность, bад — адиабатическая сжимаемость, bиз = gbадизотермическая сжимаемость, g = cp/cv отношение теплоёмкостей при постоянном давлении cp и при постоянном объёме cv.

В идеальном газе С. з.

(формула Лапласа), где r0 среднее давление в среде, R — универсальная газовая постоянная, Т — абсолютная температура, m — молекулярный вес газа. При g= 1 получаем формулу Ньютона для С. з., соответствующую предположению об изотермическом характере процесса распространения. В жидкостях обычно можно пренебречь различием между адиабатическим и изотермическим процессами.

С. з. в газах меньше, чем в жидкостях, а в жидкостях меньше, как правило, чем в твёрдых телах, поэтому при сжижении газа С. з. возрастает. В табл. 1 и 2 приведены значения С. з. для некоторых газов и жидкостей, причём в тех случаях, когда имеется дисперсия С. з., приведены её значения для малых частот, когда период звуковой волны больше, чем время релаксации.

Табл. 1. — Скорость звука в газах при 0 °C и давлении 1 атм

Газ

с, м/сек

Азот

334

Кислород

316

Воздух

331

Гелий

965

Водород

1284

Метан

430

Аммиак

415

С. з. в газах растет с ростом температуры и давления; в жидкостях С. з., как правило, уменьшается с ростом температуры. Исключением из этого правила является вода, в которой С. з. увеличивается с ростом температуры и достигает максимума при температуре 74 °С, а с дальнейшим ростом температуры уменьшается. В морской воде С. з. зависит от температуры, солёности и глубины, что определяет ход звуковых лучей в море и, в частности, существование подводного звукового канала.

Табл. 2. — Скорость звука в жидкостях при 20° С

Жидкость

с, м/сек

Вода

1490

Бензол

1324

Спирт этиловый

1180

Четырёххлористый углерод

920

Ртуть

1453

Глицерин

1923

С. з. в смесях газов или жидкостей зависит от концентрации компонентов смеси.

С. з. в изотропных твёрдых телах определяется модулями упругости вещества и его плотностью. В неограниченной твёрдой среде распространяются продольные и сдвиговые (поперечные) волны, причём фазовая С. з. для продольной волны равна

,

а для сдвиговой

где Е — модуль Юнга, G — модуль сдвига, g — коэффициент Пуассона, К — модуль объёмного сжатия. Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн (см. табл. 3).

Табл. 3. — Скорость звука в некоторых твердых телах.

Материал

cl, м/сек, скорость продольной волны

ct, м/сек, скорость сдвиговой волны

сlст, м/сек, скорость звука в стержне

Кварц плавленый

5970

3762

5760

Бетон

4200—5300

Плексиглас

2670—2680

1100—1121

1840—2140

Стекло, флинт

3760—4800

2380—2560

3490—4550

Тефлон

1340

Эбонит

2405

1570

Железо

5835—5950

2030

Золото

3200—3240

1200

2030

Свинец

1960—2400

700—790

1200—1320

Цинк

4170—4210

2440

3700—3850

Никель

5630

2960

4785—4973

Серебро

3650—3700

1600—1690

2610—2800

Латунь Л59

4600

2080

3450

Алюминиевый сплав АМГ

6320

3190

5200

В монокристаллических твёрдых телах С. з. зависит от направления распространения волны относительно кристаллографических осей. Во многих веществах С. з. зависит от наличия посторонних примесей. В металлах и сплавах С. з. существенно зависит от обработки, которой был подвергнут металл: прокат, ковка, отжиг и т. п.

Измерение С. з. используется для определения многих свойств веществ. Измерение малых изменений С. з. является чувствительным методом определения наличия примесей в газах и жидкостях. В твёрдых телах измерения С. з. и её зависимость от разных факторов позволяют исследовать зонную структуру полупроводников, строение Ферми поверхностей в металлах и пр. Ряд контрольно-измерительных применений ультразвука в технике основан на измерениях С. з.

Всё вышеизложенное относится к распространению звука в сплошной среде, т. е. С. з. является макроскопической характеристикой среды. Реальные вещества не являются сплошными; их дискретность приводит к необходимости рассмотрения упругих колебаний др. типов. В твёрдом теле понятие С. з. относится только к акустической ветви колебаний кристаллической решётки.

Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1953; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Колесников А. Е., Ультразвуковые измерения, М., 1970; Исакович М. А., Общая акустика, М., 1973.

А. Л. Полякова.

Следующие

Скорость света в свободном пространстве (вакууме) с, скорость распространения любых электромагнитных волн (в т. ч. световых); од… читать дальше



Скорость химической реакции, величина, характеризующая интенсивность реакции химической. Скоростью образования продукта реакции … читать дальше



Скороходова Ольга Ивановна [р. 11(24).7.1914, с. Белозёрка, ныне Херсонской области], советский учёный в области дефектологии, п… читать дальше