Ньютона метод
Ньютона метод, метод приближённого нахождения корня x0 уравнения f (x) = 0, называемый также методом касательных. Н. м. состоит в том, что по исходному ("первому") приближению х = a1 находят второе (более точное), проводя касательную к графику (см. рис.) у = f (x) в точке А [а1 f (a1)] до её пересечения с осью Ox; точка пересечения х = a1 — f (a1)/f’(a1) и принимается за новое значение a2. корня. Повторяя в случае необходимости этот процесс, получают всё более и более точные приближения a2, a3,... корня x0 при условии, что производная f’(x) монотонна и сохраняет знак на сегменте, содержащем x0. Ошибка e2 = x0 —a2 нового значения a2 связана со старой ошибкой e1 = x0 — a1 формулой , где — значение второй производной функции f (x) в некоторой точке x, лежащей между x0 и a1. Иногда рекомендуется Н. м. применять одновременно с к.-л. другим способом, например с линейного интерполирования методом. Н. м. допускает обобщения, которые позволяют применять его для решения уравнений F (x) = 0 в нормированных пространствах (F— оператор в этом пространстве), в частности для решения систем уравнений и функциональных уравнений. Метод разработан И. Ньютоном в 1669.
Следующие
Ньютона механика, механика, в основе которой лежат Ньютона законы механики; то же, что классическая механика.… читать дальше
Ньютона система рефлектора, система рефлектора, в которой лучи, отражаемые главным параболическим зеркалом, перехватываются плос… читать дальше
Ньютон, гора на о. Западный Шпицберген (владение Норвегии), высшая точка архипелага Шпицберген (1712 м). Сложена кристаллическим… читать дальше