Большая советсткая энциклопедия Непараметрические методы
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Непараметрические методы

Непараметрические методы в математической статистике, методы непосредственной оценки теоретического распределения вероятностей и тех или иных его общих свойств (симметрии и т.п.) по результатам наблюдений. Название Н. м. подчёркивает их отличие от классических (параметрических) методов, в которых предполагается, что неизвестное теоретическое распределение принадлежит какому-либо семейству, зависящему от конечного числа параметров (например, семейству нормальных распределений), и которые позволяют по результатам наблюдений оценивать неизвестные значения этих параметров и проверять те или иные гипотезы относительно их значений. Разработка Н. м. является в значительной степени заслугой советских учёных.

В качестве примера Н. м. можно привести найденный А. Н. Колмогоровым способ проверки согласованности теоретических и эмпирических распределений (так называемый критерий Колмогорова). Пусть результаты n независимых наблюдений некоторой величины имеют функцию распределения F (x) и пусть Fn (x) обозначает эмпирическую функцию распределения (см. Вариационный ряд), построенную по этим n наблюдениям, a Dnнаибольшее по абсолютной величине значение разности Fn (x) — F (x). Случайная величина

имеет в случае непрерывности F (x) функцию распределения Kn (l), не зависящую от F (x) и стремящуюся при безграничном возрастании n к пределу

Отсюда при достаточно больших n, для вероятности pn,l. Неравенства

получается приближённое выражение

pn,l " 1 - К (l). (*)

Функция К (l) табулирована. Её значения для некоторых А приведены в табл.

Таблица функции К (l)

l

0,57

0,71

0,83

1,02

1,36

1,63

К (l)

0,10

0,30

0,50

0,75

0,95

0,99

Равенство (*) следующим образом используется для проверки гипотезы о том, что наблюдаемая случайная величина имеет функцию распределения F (x): сначала по результатам наблюдений находят значение величины Dn, а затем по формуле (*) вычисляют вероятность получения отклонения Fn от F, большего или равного наблюдённому. Если указанная вероятность достаточно мала, то в соответствии с общими принципами проверки статистических гипотез (см. Статистическая проверка гипотез) проверяемую гипотезу отвергают. В противном случае считают, что результаты опыта не противоречат проверяемой гипотезе. Аналогично проверяется гипотеза о том, получены ли две независимые выборки, объёма n1 и n2 соответственно, из одной и той же генеральной совокупности с непрерывным законом распределения. При этом вместо формулы (*) пользуются тем, что вероятность неравенства

как это было установлено Н. В. Смирновым, имеет пределом К (l), здесь Dn1, n2 есть наибольшее по абсолютной величине значение разности Fn1 (х) — Fn2 (х).

Другим примером Н. м. могут служить методы проверки гипотезы о том, что теоретическое распределение принадлежит к семейству нормальных распределений. Отметим здесь лишь один из этих методов — так называемый метод выпрямленной диаграммы. Этот метод основывается на следующем замечании. Если случайная величина Х имеет нормальное распределение с параметрами a и s, то

где Ф-1 — функция, обратная нормальной:

Т. о., график функции у = Ф-1[F (x)]будет в этом случае прямой линией, а график функции у = Ф-1[Fn (x)] — ломаной линией, близкой к этой прямой (см. рис.). Степень близости и служит критерием для проверки гипотезы нормальности распределения F (x).

Лит.: Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики для технических приложений, 3 изд., М., 1969; Большее Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1968.

Ю. В. Прохоров.

Следующие

Непарнокопытные, непарнопалые (Perissodactyla), отряд млекопитающих. Крупные, реже средней величины животные. Число пальцев на п… читать дальше



Непарнопалые, отряд млекопитающих; то же, что непарнокопытные.… читать дальше



Непарный шелкопряд [Ocneria (Porthetria или Lymantria) dispar], бабочка семейства волнянок; опасный вредитель многих древесных п… читать дальше