Большая советсткая энциклопедия Матрица рассеяния
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Матрица рассеяния

Матрица рассеяния, S-maтрица, совокупность величин (матрица), описывающая процесс перехода квантовомеханических систем из одних состояний в другие при их взаимодействии (рассеянии). Понятие "М. р." введено В. Гейзенбергом в 1943.

При рассеянии система переходит из одного квантового состояния, начального (его можно отнести к моменту времени t = —¥) в другое, конечное (t = +¥). Если обозначить набор квантовых чисел, характеризующих начальное состояние, через i, а конечное — через f, то амплитуда рассеяния (квадрат модуля которой определяет вероятность данного рассеяния) может быть записана как Sfi. Совокупность амплитуд рассеяния образует таблицу с двумя входами (i — номер строки, f — номер столбца), которая и называется М. р. S. Каждая амплитуда является элементом этой матрицы (матричным элементом). Наборы квантовых чисел i, f могут содержать как непрерывные величины (энергию, угол рассеяния и другие), так и дискретные (орбитальное квантовое число, спин, изотопический спин, массу и т. д.). В простейшем случае системы двух бесспиновых частиц в нерелятивистской квантовой механике состояние определяется относительным импульсом частиц р; тогда амплитуда рассеяния представляет собой функцию двух переменных — энергии Е и угла рассеяния J

Sfi = F (E, J).

В общем случае М. р. содержит элементы, отвечающие как упругому рассеянию, так и процессам превращения и рождения частиц. Квадрат модуля матричного элемента ½Sfi½2 определяет вероятность соответствующего процесса (или его эффективное поперечное сечение).

Нахождение М. р. — основная задача квантовой механики и квантовой теории поля. М. р. содержит всю информацию о поведении системы, если известны не только численные значения, но и аналитические свойства (см. Аналитические функции) её элементов; в частности, её полюсы (см. Особая точка) определяют связанные состояния системы (а следовательно, дискретные уровни энергии). Из основных принципов квантовой теории следует важнейшее свойство М. р. — её унитарность. Оно выражается в виде соотношения SS+ = 1 [S+ — матрица, эрмитово сопряжённая S, то есть (S+)fi = S*if, где знак* означает комплексное сопряжение] или

и отражает тот факт, что сумма вероятностей рассеяния по всем возможным каналам реакции должна равняться единице. Соотношение унитарности позволяет устанавливать важные соотношения между различными процессами, а в некоторых случаях даже полностью решить задачу. В релятивистской квантовой механике существует направление, в котором М. р. считается первичной динамической величиной; требования унитарности и аналитичности М. р. должны служить при этом основой построения полной системы уравнений, определяющей матрицу S.

В. Б. Берестецкий.

Следующие

Матрицирование, полиграфическая операция для воспроизведения углублённого изображения графических элементов (штриховых и полутон… читать дальше



Матричные игры, понятие игр теории. М. и. — игры, в которых участвуют два игрока (I и II) с противоположными интересами, причём … читать дальше



Матричные модели в экономике, один из наиболее распространённых типов экономико-математических моделей. Представляют собой прямо… читать дальше