Математический интуиционизм
Математический интуиционизм, философско-математическое течение, отвергающее теоретико-множественную трактовку математики и считающее интуицию единственным источником математики и главным критерием строгости её построений. Восходящая к античной математике интуиционистская традиция в той или иной степени разделялась такими учёными, как К. Ф. Гаусс, Л. Кронекер, А. Пуанкаре, А. Лебег, Э. Борель, Г. Вейль. С развёрнутой критикой классической математики и радикальной программой интуиционистского переустройства математики выступил в начале 20 века Л. Э. Я. Брауэр. Формирование этой программы, которую ныне и принято называть "интуиционизмом" (сам Брауэр использовал термин "неоинтуиционизм"), проходило в острой полемике с математическим формализмом на фоне вызванного антиномиями теории множеств кризиса оснований математики. Брауэр решительным образом отвергал как веру в актуальный характер бесконечных множеств (см. Бесконечность в математике), так и правомерность экстраполяции в область бесконечного выработанных для конечных совокупностей законов традиционной логики. Согласно интуиционистским воззрениям, предметом исследования математики являются умственные построения, рассматриваемые как таковые "безотносительно к таким вопросам о природе конструируемых объектов, как вопрос, существуют ли эти объекты независимо от нашего знания о них" (А. Гейтинг, Нидерланды). Математические утверждения — суть некоторая информация о выполненных построениях. Обращение с умственными построениями требует особой логики — так называемой интуиционистской логики, не принимающей, в частности, в сколько-нибудь полном объёме исключённого третьего принципа.
В серии статей начиная с 1918 Брауэр и его последователи осуществили построение основных разделов интуиционистской математики — теории множеств, математического анализа, топологии, геометрии и так далее. В настоящее время (70-е годы 20 века) интуиционистская математика является достаточно глубоко разработанным направлением. Требования интуиционистской программы обоснования математики приводят к тому, что некоторые разделы традиционной математики приобретают весьма необычный вид. Это связано с отказом рассматривать актуально заданные бесконечные множества как объект исследования и с требованием эффективности всех осуществляемых построений. Весьма своеобразным является основное орудие М. и. — концепция свободно становящейся последовательности (в другой терминологии — последовательности выбора) и связанная с ней новая трактовка числового континуума как "среды становления" последовательности измельчающихся рациональных интервалов (в противовес традиционной точке зрения, конструирующей континуум из отдельных точек). В своей простейшей форме свободно становящаяся последовательность (ссп) есть функция, перерабатывающая натуральные числа в натуральные и такая, что любое её значение может быть эффективно вычислено. Точное исследование показывает, что следует различать несколько видов ссп в зависимости от степени информации, известной исследователю о ссп. Считая критерием верности построений прежде всего интуицию, и в противовес формализму, Брауэр возражал против попыток формализации интуиционистской математики и, в частности, интуиционистской логики. Но "интуиция" интуиционизма, независимо от философских установок и взглядов на неё Брауэра и Вейля, — это, в основной своей части, наглядная умственная убедительность простейших конструктивных процессов (см. Конструктивная математика), складывающаяся у людей в процессе их социального развития, обучения и воспитания и как таковая вполне допускающая исследование точными методами. Значительные успехи были достигнуты в изучении интуиционистской логики именно после того, как основные ее законы были точно сформулированы в виде исчислений, к которым можно было применять точные методы математической логики. Можно упомянуть, например, известную интерпретацию интуиционистского исчисления предикатов, предложенную А. Н. Колмогоровым, погружение классической формальной арифметики в интуиционистскую (К. Гедель), доказательство независимости логических связок и невозможность представления интуиционистского исчисления предикатов в виде конечнозначной логики (К. Гедель), теорию моделей для интуиционистской логики и многие другие факты, выясняющие значение и особенности интуиционистское логики по сравнению с классической, которые принципиально не могли бы быть получены без предварительной точной формулировки. Точная формулировка законов интуиционистской логики и интуиционистской арифметики была предложена уже в 30-е годы 20 века Гейтингом. Удовлетворительное построение теории ссп и более высоких разделов интуиционистской математики было завершено лишь к 70-м годам (С. Клини и другие). М. и. находится в стадии дальнейшей интенсивной разработки. Внимание М. и. к эффективности получаемых результатов находится в прекрасном согласии с вычислительной тенденцией в современной математике и привлекает к интуиционистской логике большое число плодотворно работающих математиков. В СССР группа математиков-логиков во главе с А. А. Марковым занимается разработкой конструктивной математики — близкого к М. и. направления (см. Конструктивное направление в математике).
Лит.: Вейль Г., О философии математики. Сборник работ, перевод с немецкого, М. — Л., 1934; Гейтинг А., Интуиционизм, перевод с английского, М., 1965; Френкель А. А., Бар-Хиллел И., Основания теории множеств, перевод с английского, М., 1966.
А. Г. Драгалин Б. А. Кушнер.
Следующие
Математический маятник, материальная точка, совершающая под действием силы тяжести колебания вдоль дуги окружности, расположенно… читать дальше
"Математический сборник", советский научный журнал, публикующий оригинальные научные исследования, относящиеся к разли… читать дальше
Математический союз международный (International Mathematical Union, IMU), научное объединение математиков, созданное в 1952. Чл… читать дальше