Большая советсткая энциклопедия Линейчатая геометрия
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Линейчатая геометрия

Линейчатая геометрия, раздел геометрии, в котором рассматриваются в качестве элементов пространства прямые линии. Как известно, прямая в пространстве определяется четырьмя постоянными — коэффициентами а, b, р, q в уравнениях х = az + р, у = bz + q. Следовательно, величины а, b, р, q можно рассматривать как координаты прямой. Если эти координаты являются функциями одного, двух или трёх параметров, то соответствующие совокупности прямых образуют линейчатые поверхности и т. н. конгруэнции и комплексы прямых. Эти геометрические образы и являются объектом изучения Л. г. Примером линейчатой поверхности может служить однополостный гиперболоид, примером конгруэнции — совокупность общих касательных к двум каким-либо поверхностям, примером комплекса прямых — совокупность касательных к одной какой-либо поверхности.

Для изучения линейчатых поверхностей, конгруэнций и комплексов прямых с единой точки зрения в Л. г. вводятся так называемые линейные однородные координаты прямой. Пусть заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда линейными однородными координатами прямой, проходящей через эти точки, называют шесть чисел, пропорциональных (или равных) числам:

x1= x1 — x2, x2 = y1 — y2, x3 = z1 — z2, x4 = y1z2 — y2z1, x5 = x2z1 — x1z2, x6 = x1y2 — x2y1.

Числа x1, x2, x3 являются компонентами вектора , а x4, x5, x6 — компоненты момента этого вектора относительно начала координат. Легко проверить, что числа xi удовлетворяют соотношению

x1x4 + x2x5 + x3x6 = 0. (1)

Таким образом, каждой прямой соответствуют шесть определяемых с точностью до постоянного множителя чисел xi, удовлетворяющих соотношению (1), и обратно, числа xi (не все равные нулю), связанные условием (1), определяют единственным образом некоторую прямую (как её координаты в указанном выше смысле). Одно однородное линейное уравнение

(2)

определяет линейный комплекс — совокупность прямых, заполняющих пространство так, что через каждую точку пространства проходит пучок прямых, лежащих в одной плоскости. Таким образом, каждой точке ("полюсу") пространства можно поставить в соответствие плоскость ("полярную плоскость"), содержащую все прямые комплекса, проходящую через эту точку. Это соответствие называют нулевой системой; оно аналогично соответствию полюсов и полярных плоскостей поверхности 2-го порядка. Если полярные плоскости всех точек пространства проходят через одну прямую (ось), то комплекс состоит из всех прямых, пересекающих ось; его называют специальным линейным комплексом. В этом случае коэффициенты уравнения (2) удовлетворяют условию

a1a4 + a2a5 + a3a6 = 0.

Система двух однородных линейных уравнений вида (2) определяет линейную конгруэнцию — совокупность прямых, пересекающих две данные прямые (которые могут быть и мнимыми). Три однородных линейных уравнения определяют линейчатую поверхность, являющуюся в этом случае либо однополостным гиперболоидом, либо гиперболическим параболоидом.

Линейные однородные координаты прямой были введены Ю. Плюккером в 1846. Он же подробно изучил теорию линейного комплекса. В дальнейшем Л. г. разрабатывалась в работах Ф. Клейна и русского математика А. П. Котельникова. Дифференциальная геометрия конгруэнций, начатая Э. Куммером в 1860, получила большое развитие в трудах итальянских математиков Л. Бианки, Г. Санниа и французского математика А. Рибокура. На основе созданного в 1895 Котельниковым "винтового" исчисления советским математиком Д. Н. Зейлигером развита теория линейчатых поверхностей и конгруэнций. Проективная теория конгруэнций построена в 1927 советским математиком С. П. Финиковым.

Лит.: Зейлигер Д. Н., Комплексная линейчатая геометрия. Поверхности и конгруэнции, Л. — М., 1934; Фиников С. П., Теория поверхностей, М. — Л., 1934; его же, Проективно-дифференциальная геометрия, М. — Л.,1937; его же, Теория конгруэнций, М. — Л., 1950; Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1—2, М. — Л., 1947—48; Клейн Ф., Высшая геометрия, пер. с нем., М. — Л., 1939; Zindler К., Liniengeometrie, Bd 1—2, Lpz., 1902—06.

Э. Г. Позняк.

Следующие

Линейчатая поверхность, совокупность прямых, зависящая от одного параметра; Л. п. можно описать движением прямой (образующей) по… читать дальше



Линейчатые спектры, спектры оптические, состоящие из отдельных спектральных линий, типичны для свободных атомов.… читать дальше



Линен (Lynen) Феодор (р. 6.4.1911, Мюнхен), немецкий биохимик. Член Германской академии естествоиспытателей "Леопольдина&qu… читать дальше