Гравитационное поле Земли
Гравитационное поле Земли, поле силы тяжести; силовое поле, обусловленное притяжением (тяготением) Земли и центробежной силой, вызванной её суточным вращением. Зависит также (незначительно) от притяжения Луны, Солнца и др. небесных тел и масс земной атмосферы. Г. п. З. характеризуется силой тяжести (см. Гравиметрия), потенциалом силы тяжести и различными производными от него. Потенциал имеет размерность см2.сек–2. За единицу измерения первых производных потенциала, в том числе силы тяжести, в гравиметрии принимается миллигал (мгл), равный 10–3 см.сек–2, а вторых производных — этвеш (Е), равный 10–9 сек–2. Часть потенциала силы тяжести, обусловленная только притяжением масс Земли, называется потенциалом земного притяжения, или геопотенциалом.
Для решения практических задач потенциал земного притяжения представляется в виде ряда
где r — геоцентрическое расстояние; j и l — географическая широта и долгота точки, в которой рассматривается потенциал; Pnm — присоединённые функции Лежандра; GE — произведение постоянной тяготения на массу Земли, равное 398 603·109 м3 сек–2, а — большая полуось Земли; Cnm и Snm — безразмерные коэффициенты, зависящие от фигуры Земли и внутреннего распределения масс в ней. Главный член ряда — соответствует потенциалу притяжения шара с массой Земли. Второй по величине член (содержащий C20) учитывает сжатие Земли. Последующие члены, коэффициенты которых на три порядка и более меньше, чем C20, отражают детали фигуры и строения Земли. Из-за отсутствия точных данных об истинном распределении масс внутри Земли и о её фигуре невозможно непосредственно вычислить коэффициенты Cnm и Snm. Поэтому они определяются косвенно по совокупности измерений силы тяжести на поверхности Земли и по наблюдениям возмущений в движении близких искусственных спутников Земли (ИСЗ). В табл. приведены результаты определения коэффициентов разложения, установленные на основе наблюдений движения ИСЗ. Аналогичными рядами описывается поле силы тяжести Земли.
Для удобства решения различных задач Г. и. З. условно разделяется на нормальную и аномальную части. Основная — нормальная часть, описываемая несколькими первыми членами разложения, соответствует идеализированной Земле ("нормальной" Земле) простой геометрической формы и с простым распределением плотности внутри неё. Аномальная часть поля меньше по величине, но имеет сложное строение. Она отражает детали фигуры и распределения плотности реальной Земли. Нормальная часть поля силы тяжести рассчитывается по формулам распределения ускорения нормальной силы тяжести g. В СССР и др. социалистических странах наиболее часто используется формула Гельмерта (1901—09):
g = 978030 (1 + 0,005302 sin2j — —0,000007sin 22j) мгл.
Формула Кассиниса (1930), называемая международной, имеет вид:
g = 978049 (1 + 0,0052884 sin2j — 0,0000059 sin2 2j) мгл.
Существуют другие, менее распространённые, формулы, учитывающие небольшое долготное изменение g, а также асимметрию Северного и Южного полушарий. Ведётся подготовка к переходу к единой новой формуле с учётом уточнённого абсолютного значения силы тяжести. С помощью формул распределения нормальной силы тяжести, зная высоты пунктов наблюдений, а также строение окружающего рельефа и плотности слагающих его пород, вычисляют аномалии силы тяжести, которые применяются для решения большинства задач гравиметрии.
Потенциал силы тяжести используется при изучении фигуры Земли, близкой к уровенной поверхности Г. п. З., а также в астродинамике при изучении движения искусственных спутников в Г. п. З. (уровенной называется поверхность, во всех точках которой потенциал имеет одинаковое значение; сила тяжести направлена к ней по нормали). Одна из уровенных поверхностей, которая совпадает с невозмущённой средней поверхностью океанов, называется геоидом. По направлению силы тяжести устанавливается отвес и определяется положение астрономического зенита. Поскольку уклонения отвеса приближённо равны отношению горизонтальной составляющей притяжения к силе тяжести, то знание их величин в определённом смысле позволяет судить и о Г. п. З.
Вторые производные потенциала силы тяжести применяются при решении геологоразведочных и геодезических задач. Вертикальный градиент силы тяжести, соответствующий нормальной части Г. п. З., от полюса к экватору изменяется всего на 0,1% от его полной величины, равной в среднем для всей Земли 3086 этвеш. Намного меньше по абсолютной величине нормальные горизонтальные градиенты силы тяжести и вторые производные потенциала силы тяжести, характеризующие кривизну уровенной поверхности Земли. Аномальная часть вторых производных потенциала позволяет судить о плотностных неоднородностях в верхних частях земной коры. По величине она достигает в равнинных местах десятков, а в горных — сотен этвеш. В гравиметрической разведке, помимо вторых производных потенциала силы тяжести, используются третьи производные потенциала, получаемые путём пересчёта по аномалиям силы тяжести. Сила тяжести измеряется гравиметрами и маятниковыми приборами, а вторые производные потенциала силы тяжести — гравитационными вариометрами.
Коэффициенты (умноженные на 10°) разложения потенциала земного притяжения в ряд по сферическим функциям, определённые по наблюдениям движения искусственных спутников Земли (по данным Смитсоновской астрофизической обсерватории, США, опубл. 1970)
m | 0 | 1 | 2 | 3 | 4 | 5 |
С2m | -1082,63 | - | 2,41 | - | - | - |
S2m | - | - | -1,36 | - | - | - |
C3m | 2,54 | 1,97 | 0,89 | 0,69 | - | - |
S3m | - | 0,26 | -0,63 | 1,43 | - | - |
C4m | 1,59 | -0,53 | 0,33 | 0,99 | -0,08 | - |
S4m | - | -0,49 | 0,71 | -0,15 | 0,34 | - |
C4m | 0,23 | -0,05 | 0,61 | -0,43 | -0,27 | 0,13 |
S5m | - | -0,10 | -0,35 | -0,09 | 0,08 | -0,60 |
Лит.: Жонголович И., Внешнее гравитационное поле Земли и фундаментальные постоянные, связанные с ним, "Тр. института теоретической астрономии", 1952, в. 3; Бровар В. В., Магницкий В. А., Шимбирев Б. П., Теория фигуры Земли, М., 1961; Грушинский Н. П., Теория фигуры Земли, М., 1963.
М. У. Сагитов, В. А. Кузиванов.
Следующие
Гравитационное смещение, изменение частоты электромагнитного излучения при его распространении в гравитационном поле; см. Красно… читать дальше
Гравитационные волны, поперечные волны, излучаемые ускоренно движущимися массами и распространяющиеся со скоростью света; см. Гр… читать дальше
Гравитационный вариометр, прибор для измерения вторых производных потенциала силы тяжести, характеризующих кривизну поверхности … читать дальше