Большая советсткая энциклопедия Двойное отношение
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Двойное отношение

Двойное отношение (сложное, или ангармоническое) четырёх точек M1, M2, Мз, M4 на прямой (рис. 1), число, обозначаемое символом (M1M2M3M4) и равное

  При этом отношение M1M3/M3M2 считается положительным, если направления отрезков M1M3 и M3M2 совпадают, и — отрицательным при различных направлениях. Д. о. зависит от порядка нумерации точек, который может отличаться от порядка следования точек на прямой. Наряду с Д. о. четырёх точек, рассматривается Д. о. четырёх прямых, проходящих через точку О. Это отношение обозначается символом (m1m2m3m4). Оно равно

причём угол (mi mj) между прямыми mi и mj) рассматривается со знаком.

  Если точки M1, M2, Мз, M4 лежат на прямых m1, m2, m3, m4 (рис. 1), то

(M1M2M3M4) = (m1m2m3m4),

поэтому, если точки M1, M2, Мз, M4 и M’1, M2’, Мз’, M4’ получены пересечением одной четвёрки прямых m1, m2, m3, m4 (рис. 1), то (M1’, M2’, Мз’, M4’) = (M1M2M3M4).

  Если же прямые m1, m2, m3, m4 и m1’, m2’, mз’, m4’ проектируют одну четвёрку точек M1, M2, Мз, M4 (рис. 2), то (m1m2mзm4’) = (m1m2m3m4).

  Д. о. не меняется также и при любых проективных преобразованиях, т. е. является инвариантом таких преобразований, и поэтому Д. о. играют важную роль в проективной геометрии. Особенно важную роль играют четвёрки точек и прямых, для которых Д. о. равно — 1. Такие четвёрки называют гармоническими (см. Гармоническое расположение.).

  Э. Г. Позняк.

Следующие

Двойное подчинение, в социалистических государствах порядок подчинённости органов государственного управления, при котором нижес… читать дальше



Двойной ряд, выражение вида u11 + u12 + ... + u1n + ... + u21 + u22 + ... + u2n + ... .................................... +… читать дальше



Двойной суперфосфат, концентрированное фосфорное удобрение; см. Суперфосфат.… читать дальше